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INTRODUCTION 

The electrical resistivity p of amorphous metals is usually described in 

the context of the diffraction model, i.e., in terms of the Baym-Faber-Ziman 

(refs 1-3) theory.  The temperature T dependence of p(T) is essentially 

determined by that of the resistivity static structure factor (refs 4,5) 

SP(K) where K is the scattering vector.  The resistivity is actually given by 

a weighted average of the product of SP(K) and the absolute square of the 

scattering matrix element or t-matrix (ref 6) t(K) which is independent of T. 

(It is to be understood that references to a(K), SP(K), and t(K) are to be 

generalized to the appropriate partial structure factors and constituent 

t-matrices in alloys.) 

For transition metals, it is often assumed that backscattering (i.e., K " 

Ik-p,  where kp is the Fermi wavenumber) is dominant (ref 7).  In such cases one 

has 

p(T)/p(9) - SP(2kF)/S
P(2kF) (1) 

T       8 

where the T dependence of the resistivity static structure factor is 

explicitly indicated and 9 is the Debye temperature.  The geometrical 

structure factor 

a(K) = -  I exp(iK-(m-n)) (2) 
N  

m,n 

where m is the averaged position vector for the mth ion plays the central role 

in determining SP(K) and hence p(T).  The scattering vector corresponding to 

the first peak in a(K) is denoted kp and the ratio of 2kF/kp is prominent in 

the diffraction model description of electrical transport in amorphous alloys. 

References are listed at the end of this report. 



To apply the diffraction model in the general case (not restricted to the 

backscattering dominant approximation of Eq. (1)), one requires expressions 

for SP(K) and |t(K)|2 for 0 < K < 2kF.  SP(K) has been computed (refs 5,8) for 

Debye phonon spectra and for model a(K) although in principle one could employ 

a more realistic phonon spectrum and measured a(K).  This is done for reasons 

of simplicity and because a(K) can be nicely approximated by analytic Percus- 

Yevick hard sphere forms (ref 9) for K in the region of the first peak and 

because the details of the phonon spectrum are believed to be unimportant in 

determining SP(K).  The t-matrix is usually approximated by tabulated 

pseudopotential forms or in terms of expressions involving scattering phase 

shifts (ref 7) nii(Ep) evaluated at the Fermi energy Ep for angular momentum 

quantum number &.  The pseudopotential applications in liquids (refs 2,10) 

agreed reasonably well with experiment although there were indications that 

Born approximation was inadequate even for column I and II metals (ref 11) . 

The t-matrix forms, which incorporate single site multiple scattering, are 

believed to be necessary for the treatment of most glassy metals. 

Many of the predictions of the diffraction model for electrical transport 

in amorphous metals are approximately independent of t(K).  Some of the 

results (ref 8) include: 

(i) The concentration dependence of p is determined (essentially) by 

a(2kF), which can be approximated by simple functions of 2kF/kp.  (The 

concentration dependence of kp is assumed to be known and kp is often assumed 

to be fixed in this prescription.) 

(ii) The temperature coefficient of resistivity at the Debye temperature 

TCR is defined as 



TCR = 3£np/8T|T=9 (3) 

The diffraction model, in the "dominant backscattering" approximation yields 

TCR - 9£n[SP(2kF)]/8T|T=e (3') 

Results based on Eq. (31) are independent of the actual constituents of the 

alloys and have the appealing attribute of depending solely on 2kF/kp and the 

atomic arrangement.  For typical amorphous metals negative TCR is predicted 

(ref 8) for 0.9 < 2kF/kp < 1.1.  (This range of 2kF/kp is broader than that 

seen in liquid metals.)  The magnitude and sign of the TCR may be expressed in 

terms of the Debye-Waller exponent 2W(2kF), evaluated at T = 6 and K = 2kF, 

p 
the averaged resistivity structure factor A (K), and the Debye integral I2, 

defined in Reference 5. 

(iii) At low temperatures, the SP(K) and hence the normal state 

resistivity varies like [1 + (TT
2
/6) a(T/e)2] independent of the sign of the TCR 

as defined in Eq. (3).  The constant a, which also appears in the standard 

expression for the Debye-Waller exponent, is given by 

a = 12 4i2kF
2/MkBe (4) 

for a Debye phonon spectrum where ^ is Plank's constant divided by 2IT, M is 

the averaged ionic mass, and kg is Boltzmann's constant. 

(iv) Small maxima in SP(K) are predicted in negative TCR cases.  We 

denote the temperature corresponding to the maximum in SP by TM.  The theory 

then yields the result that both TM and SPT (2kF)/SPo
0K.(2kF) -1*0 and thus 

M 

p(TM)/p(0
oK) - 1.0 decrease as 2kF approaches kp from either side. 

The success of the diffraction model in describing electrical transport 

in amorphous metals has been mixed.  The concentration dependence of the 

magntiude of p is apparently well described.  However, only qualitative 



agreement with the T dependence has been obtained in low p alloys (refs 12-14) 

and serious disagreements are seen in high p alloys (refs 15-17).  Some of the 

discrepancies between the theoretical predictions and the data include:  (i) A 

considerably larger range of 2kF/kp than predicted yields negative TCR.  (ii) 

The observed negative TCR's are generally larger than predicted (unless 

unreasonably small 6 values are assumed).  (iii) The quadratically increasing 

resistivity at lowest T is often not observed.  High resistivity alloys even 

exhibit raonotonic decreasing p vs. T in most cases. 

The inconsistency of theory and experiment in the high p (i.e., p > 100 

yflcm) cases has been viewed as an example of Mooij phenomena (ref 16) or 

saturation effects (ref 18).  Meisel and Cote (ref 15) and Morton et al (ref 

19) formulated a generalization of the theory by incorporating the Pippard- 

Ziman condition (ref 20,21) on the electron-phonon interaction.  The condition 

as stated by Ziman (ref 20) takes the form:  "Phonons whose wavelengths 2ir/q 

exceed the electron mean free path A are ineffective electron scatterers" . 

The concept had originally been applied to describe ultrasonic attenuation 

(ref 21) and was subsequently also shown to be relevant to thermal conductiv- 

ity (ref 22) and degradation of superconducting transition temperature (ref 

23) in high resistivity alloys.  Incorporating this constraint into the 

diffraction model yielded improved agreement with experiment in high resistiv- 

ity metals. 

Recently, low resistivity (p < 100 uficm) amorphous non-transition metal 

alloys were the subjects of detailed experimental study by Mizutani and 

coworkers (ref 13).  Determinations of p(T) for 4 K < T < 300 K, kF, and kp 

were made.  It had been expected that the diffraction model unadorned with 



saturation effects would give a good description of electrical transport in 

such alloys because of the relatively long electron mean free path A.  Thus, 

calculations were performed for a-MgZn (ref 12).  An effective scattering 

matrix element (i.e., t-matrix), was constructed to yield the observed 

magnitude of p, to have s and p character only, and to satisfy the Friedel sum 

rule.  The geometrical structure factor was assumed to be of Percus-Yevick 

hard sphere form with n = 0.525.  The result of this calculation was in 

qualitative agreement with the data (ref 13).  However, when phonon ineffec- 

tiveness effects with appropriate electron mean free path was incorporated, 

remarkable agreement was obtained, including such features as:  (i) the 

magnitude of the TCR; (ii) the magnitude and position of the maximum in 

p(T)/p(9); (iii) the shape and extent of the approximate (T-TM)
3/2 region to 

the right of TM; (iv) the shape and extent of the quadratic in T region; and 

(v) the position and magnitude of the minimum in p(T) observed near 5 K. 

Calculations were also performed for four other values of 2kp/kp 

employing the a-MgZn effective t-matrix and electron mean free path.  These 

results were used as a basis for discussing electrical transport in general 

low resistivity alloys.  A principal conclusion in that study was that a 

procedure incorporating phonon ineffectiveness into the diffraction model (as 

had been suggested for high resistivity amorphous metals (ref 15)) yields much 

better results, especially in regard to low temperature "anomalies" in p(T) 

and the magnitude of the TCR. 

The results of Reference 12 suggested that further detailed investigation 

of the implications of the diffraction model, incorporating the Pippard-Ziman 

condition on the electron-phonon interaction, were justified.  We have begun a 



program of such studies.  Initial results were presented at the LAM 5 

conference (ref 24).  The present paper extends the range of qDA investigated 

to considerably smaller values (corresponding to p > 150 u^cm) and presents 

p(T) results on a denser 2kF/kp grid and a broader selection of model 

t-matrices is employed.  The theoretical p(T) curves provide a basis for the 

interpretation of the low T behaviors seen in amorphous metals (especially 

non-magnetic alloys) and for the observed magnitudes of the TCR. 

Reviews of the theoretical concepts described here and summaries of the 

experimental data are given in References 25 through 27. 

THEORY 

The Baym-Ziman-Faber (refs 1-3) expression for the electrical resistivity 

is 
,1    K   K  3 

p = B f  d(-~)(---nU(K)|2 (5) 
0   2kF 2kF 

where B = 12 TrQ0/e
2hVF

2, ^ is the atomic volume, Vp is the Fermi velocity, e 

is the electron change, and 

|U(K)|2=^ cic:js[:i(K)ti*(K)tj(K) 
ij 

+ (I ci|t1(K)|
2 - I  cicjti*(K)tj(K)}lP(K) (6) 

1 ij 

where c^ is the concentration of the i*-"  constituent and in Sham-Ziman 

approximation (ref 28), incorporating the Pippard-Ziman condition (ref 20), 

and for a Debye phonon spectrum, the partial resistivity structure factors are 

given by 



+ a ! (---)2/
1 d(3_)(5_)

2
I1(x)[n(x) + l]F(qA)/ -- a^CK+q)        (7) 

T  2kF   0   qD  qD ^ 

and 

IP(K) = e-2W(K) + a - (---)2 / d(--)(--)2n(x)[n(x) + l]F(qA)     (8) 
T  2kF       qD  qD 

<nOJ   0 q i 
where x =   = - — , n(x) = (ex-l)  , and F(qA) expresses the reduction 

kBT  T qD 

in electron-phonon interaction for small qA (where q is the phonon wavenumber 

and A the electron mean free path).  We employ the Pippard form (ref 21) in 

the calculations presented here, i.e., 

2 y tan"1?   3 
F(y) = - [- ] (9) 

11 y-tan-1 y  y 

The scattering matrix element (t-matrix) of the 2th  constituent is 

expressed in terms of scattering phase shifts ruJ(EF) evaluated at the Fermi 

energy Ep for angular momentum quantum number £ as 

2^3 iruJ(EF) 
tjCK) =  I (2X.+l)sinTuJ(EF)e       P)l(cose)       (10) 

m(2mEF)
1/2n0 I 

where m is the electron mass, Pji(x) is the Ith-  Legendre polynomial, and cose 

= l-2(K/2kF)
2.  These equations are generalizations (refs 15,19,25) of those 

usually employed in liquid and amorphous metal electrical transport studies. 

MODELS AND COMPUTATIONAL DETAILS 

We do not present results for general alloy systems.  Two types of 

models, which we refer to as the "binary substitutional model" and the 



"effective potential models" are discussed.  We define them as follows. 

A.  Binary substitutional models.  We refer to systems which satisfy 

a^K) « a(K) for all i,j (11) 

as "substitutional", since Eq. (11) will be obtained if the alloy constituents 

are randomly substituted for each other on a given network of sites.  For 

binary systems satisfying this condition, Eq. (16) reduces to 

|U(K)12 = cxcaltlCK) - t2(K)|2lP(K) + |citl(K) + C2t2(K)I2SP(K)    (6 ) 

We have obtained results for two cases: 

Al.  Constant t-matrix (pure s-wave scattering).  Equation (5) reduces to 

p = B{ciC2A2J dx x3lP(2kFx) + |tl2/ dx x3 SP(2kFx)}       (12a) 

= cic2BA2rD(qDA,T/0) + B|t|2 r(qDA,2kF/kp,T/9) (12b) 

One can conceive of an extensive class of t-matrices for which Eq. (12a) 

would be approximately valid; A and t would be averages of the actual linear 

combinations of t-matrices; for example, 

A = |t1(2kF) - t2(2kF)| 
and 

t = c1ti(2kF) + C2t2(2kF) 

might produce useful approximate expressions for the discussion of p(qQA, 

2kF/kp, T/0). 

A2.  Generalized a-Mgi_xZnx for x = 0.225.  The t-matrices in this model, 

representing Mg and Zn, were employed in the calculations presented at LAMS 

(ref 24).  The t-matrices were computed by the Slater Xa-Method (ref 28) with 

Herman and Skillman (ref 29) neutral atom wave functions and free electron EF 

employing computer routines based on those given by Loucks (ref 30).  The 

Kmetko (ref 31) value of Xa (viz. 0.75) was taken for Mg and Xa = 0.85 was 



chosen for Zn in order to place the d-bands in accord with photoemission 

data (ref 32).  The resulting phase shifts were njj,Zn(EF) = 0.354, 0.294, 

-0.057, and 0.002 and n£MS(EF) = -0.175, 0.085, 0.034, and 0.001 for A = 0 to 

3, respectively.  The ri£(EF) for I >  3  were set to 0.  (The results obtained 

for this potential will be seen to be well approximated by the constant 

t-matrix results with |t|2 » C1C2A2.) 

B.  Effective potential model.  When the scattering t-matrices are all 

equal, i.e., 

tiCK) = tE(K) for all i (13) 
then 

|UE(K)|2 = SEP(K)|tE(K)|
2 (14) 

where 
SEP(K) = IciCjSi-jPOO (15) 

One refers to tE(K) as the effective t-matrix and SEP(K) as the effective 

resistivity static structure factor.  The effective potential results 

discussed in this report assume that SEP can be computed according to the 

usual prescriptions with aE(K) again a Percus-Yevick hard sphere form with n = 

0.525.  Thus, these effective potential results are identical with 

substltutional model results when ti(K) = t2(2).  One might expect Eq. (13) 

would be a good approximation if the t-matrices are pseudopotential forms 

(because they are generally very similar), or if the constituents come from 

the same column of the periodic chart (e.g., a-MgZn).  We have performed 

effective potential calculations for t-matrices (i) computed for Zn as 

described in the generalized a-Mgo.775Zno.225 model, (ii) an s and p based 

form described in Reference 12, and (iii) the pseudopotential based forms 

given by Young, Meyer, and Kilby (ref 11) particularly for potassium. 



We introduce the following normalized variables: 

T = T/O (16) 

tcr 5 (e/a)TCR = (1/a) 8Jlnp/M ^ (17) 

2kF       i  r(qDA,2kF/kp,T) 
R(qDA, — . T) 5 - [— 1] (18) HD '  kp '     OL  

Lr(qDA,2kF/kp>0) 

and 
1  rD(qDA,T) 

a rD(qDA,0) 

We refer to R or RQ as normalized resistivity differences.  We shall also 

denote by tcr the result of replacing p by r(qDA,2kF/kp,T) or rD(qDA,T) in Eq. 

(17).  The tcr, R and RQ, are approximately independent of a.  (We shall also 

use Eq. (18) to define a normalized R when p is substituted for r on the 

right-hand side.) 

Thus, in the constant t-matrix substitutional model (Al), one has: 

p(T) = p(0)[l + a(KDRD(T) + KR(T))] (20) 

and 
1 3£np 
 IT-^ « KD • tcrD + K • tcr (21) 
a 3T 

where 

K = |t|2r(0)/(|tl2r(0) + c1C2A
2rD(0)) (22) 

and 
KD = 1 - K (23) 

We have suppressed the qoA and 2kF/kp parameters in these equations and tcr 

and tcrD are deduced from r(T) and rD(T), respectively.  Equation (21) is 

approximate because we have neglected cxRD(l) and oiR(l) with respect to unity. 

10 



RESULTS 

Substitutional Models 

Model Al.  Constant t-matrix substitutional model. 

Most of the results presented in this report are computed for this model. 

The value of a was fixed at 0.168, but the "normalized" results do not depend 

strongly on a.  We also assumed qj) = kp in all calculations.  Thus, when 

considering an alloy series one might have to allow for the possibility that 

qp might be essentially constant while kp varies with concentration.  The 

geometrical structure factors were modeled by Percus-Yevick forms with n = 

0.525 and include the N6^ Q term. 

Figure 1 shows plots of RD(qDA,T) vs. T for qDA = 2, 4, 6, 12, 18, 300. 

Notice that:  (i) Although for x » 1 the RD(300,T) curve is essentially flat, 

RD(300,T) still has a relatively large positive slope near T = 1.  (ii) 

RD(18,T) is essentially flat near T ■ 1.  (iii) For q^A < 18, all RD(qD^>T) 

have negative slope near T ■ 1.  (iv) RD(12,T) exhibits a broad (relatively) 

large maximum near T = 0.5.  (We shall denote the value of T corresponding to 

maxima as TM.  Hence TM « 0.5.)  (v) At qDA =6, TM « 0.3.  (vi) There are 

usually small minima in the curves which exhibit maxima.  We denote the 

normalized temperature corresponding to a minimum by 1^,  Hence % K 0.04 and 

0.08 for qpA = 12 and 6, respectively.  (vii) As q^A decreases, T^ decreases 

and Tm  increases until a critical value (qD^)c ^s  reached where the minimum 

and maximum coalesce and for qpA < (qDA)c monotonic decreasing behavior is 

observed.  For q^A < (qDA)c the curves show a "knee".  At qQA = 4 a knee 

occurs near T = 0.2, so it appears that (qDA)c " 4.  (viii) RD(2,T) decreases 

approximately as the inverse square of T for T « 0. 

11 



Figure 2 shows tcr(qDA, 2kF/kp) plotted against 2kF/kp for the same qDA 

set (I.e., 2, 4, 6, 12, 18, 300).  Note that the range of 2kF/kp corresponding 

to negative tcr expands as qDA decreases and that even at qDA = 300 (which 

yields results undistinguishable from those obtained in the standard Faber- 

Ziman theory, i.e., F(qA) = 1 in Eqs. (7) and (8)) a significant shift toward 

larger 2kF/kp and a broader range of 2kF/kp for negative tcr is obtained on 

comparison with the backscattering dominant approximation (ref 8).  If some 

tcroCqoA) which is defined in Eq. (21) and is independent of 2kF/kp, is mixed 

in the range of 2kF/kp corresponding to negative TCR is increased for qDA < 18 

and decreased for qDA > 18 with the actual mixture being given by Eq. (21). 

(For most metallic glasses studied, q^A is less than 18.) 

Figures 3 through 7 show sets of R^DA, 2kF/kp, T) vs. T with qDA as a 

parameter (same set of values as in Figures 1 and 2) for 2kF/kp = 0.9, 1.05, 

1.15, 1.30, and 1.40, respectively.  All the curves in Figure 3, for which 2kF 

= 0.9 k-, show positive tcr which decreases in magnitude as qDA decreases. 

Small minima which move toward larger T as qDA decreases are seen for qDA < 

18. 

Figure 4, for which 2kF = 1.05 kp, corresponds (approximately) to the 

largest negative tcr.  The maximum, which at qjjA = 300 occurs for T^ " 0.3, 

becomes smaller in magnitude and moves toward lower T as qj^A decreases to 12, 

with TM " 0.15 for qpA = 12, while the corresponding minima vary from % = 0 

to 0.05.  For qi)A < 6 monotonic decreasing curves are exhibited. 

Figure 5, for which 2kF = 1.15 kp, is very similar to Figure 4 except 

that the negative tcr are smaller, etc. 

12 



Figure 6, for which 2k.-p = 1.30 kp, exhibits a change from positive to 

negative tcr between q^h  = 300 and qoA = 18.  The curves for qoA = 18 to 6 

then show the same trends in % and TM as seen in the curves for qpA = 300 to 

12 in Figures 4 and 5.  The curve at qDA = 4 is monotonic with a "knee" at T " 

0.2. 

Figure 7, for which 2kF = 1.4 kp, is similar to Figure 6 with a 

transition between positive and negative tcr occurring between q^A = 12 and 6, 

with maxima and minima and the expected trends in i^ and TM in the curves for 

q^A = 6 and 4, and with monotonic decreasing variation for qoA = 2. 

The effect of mixing in some RoCqD^'O according to the prescription in 

Eq. (20) is to increase the size of the maxima, to increase T^, and to 

decrease Xm,     Also, if the difference term were dominant (i.e., Kp » K), then 

p would vary as ci(l-ci) rather than as a(2kF) for an alloy series. 

It is also interesting to consider families of p vs. T curves for fixed 

q^A.  We show detailed results for q^A = 12 and 6 in Figures 8 and 9.  These 

figures exhibit interesting trends with 2kp/kp.  Also for a qpA value between 

12 and 6 (actually at qpA " 10) monotonic decreasing p vs. T begins to occur 

for small ranges of 2kF/kp.  We see, in particular, that R(12, 2kp/kp, T) does 

not decrease monotonically with T for any 2kF/kp, while there is a small range 

of 2^/1^ for which R(6, 2kF/kp, T) decreases monotonically with T.  As q^A 

decreases the range of 2kF/kp corresponding to monotonically decreasing p vs. 

x expands. 

For qj)A = 12 the maximum negative TCR occurs for 2kF/kp " 1.05.  Figure 

8(a) shows a selection of curves for 2kF/kp > 1.05 and Figure 8(b) for 2kF/kp 

< 1.05.  Negative tcr curves exhibit maxima (at Tj^) and minima (at %); 

13 



positive tcr curves exhibit minima.  As |2kF/kp - 1.051 increases TM 

increases, R(12, 2kF/kp, TM) increases, and % decreases.  Eventually, values 

of 2kF/kp are reached for which positive tcr occurs and the maxima are gone; 

however, there are still small minima and ^ continues to decrease as |2kF/kp 

- 1.05| increases.  The largest minimum occurs for 2kF/kp - 1.00 and decreases 

in both directions. 

The curves in Figure 9 (qDA = 6) show all the features seen in Figure 8; 

in addition. Figure 9 exhibits several monotonically decreasing p vs. x curves 

for the range of 2kF/kp near 1.05.  For considerably smaller qDA the p vs. T 

curves are monotonically decreasing and vary as (1-AT2) near T = 0 for all 2kF 

in the vicinity of kp. 

Model A2.  Substitutional a-Mgi_xZnx for x = 0.225. 

The substitutional a-Mg.775Zn.225 model matrix element (and others for 

different x) was employed in an earlier study of electrical resistivity in low 

resistivity amorphous metals (ref 12).  A denser set of 2kF/kp, qDA values is 

studied here. 

Figure 10 shows tcr vs. 2kF/kp with qDA as parameter.  (There is a slight 

difference between this graph and that shown in Reference 24, since the 

interpolation is now conducted on a finer grid.)  One sees that the curves are 

very similar to those obtained with constant t-matrix (Figure 2).  The 

principal difference appears to be that the substitutional model (A2) curves 

are shifted to the left with respect to those computed for the constant 

t-matrix model (Al).  (E.g., for qDA = 300, Model A2 yields negative tcr for 

0.97 < 2kF/kp < 1.18 with maximum negative tcr at 2kF " 1.03 kp, while model 

Al yields negative tcr for 0.99 < 2kF/kp < 1.22 with maximum negative tcr at 
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2kF " 1.05 kp.)  The substitutional a-MgZn model also yields slightly larger 

maximum negative tcr values. 

Employing Eq. (18) again to define R(qDA, 2kF/kp,T) with p substituted 

for r on the RHS yields graphs of the form shown in Figures 3 through 9. 

Except for the shifts in 2kF/kp discussed in regard to Figure 10 the families 

of R(qDA, Zkp/kp, T) vs. T curves produced by model A2 appear essentially the 

same as the RCqD^, 2kF/kp, T) vs. T from model Al. 

There is another difference which could be discerned in such graphs.  For 

model A2, the qpA required for the equivalent curves (i.e., with the shift of 

Zkp/kp incorporated) is slightly larger than for model Al.  For example, the 

a-MgZn matrix element results for qpA = 12, which are shown in Figure 11, look 

very much like those for the constant t-matrix at qpA = 10 (not shown); in 

particular, the A2 model at qDA = 12 exhibit a range of 2kF/kp for which 

monotonic decreasing R(12, 2kF/kp, T) is obtained.  However, for the R scale 

appropriate for T between 0 and 1 and the model Al and A2 p vs. T curves, a 

strong family resemblance is seen for the same q^A.  (When one examines p vs. 

T for an R scale appropriate for T between 0 and 0.3 the correspondence is 

improved, for example, by comparing curves for model A2 with 2kF/kp shifted at 

q^A = 12 with those of model Al at q^A = 10, i.e., shifting q^A as well as 

2kF/kp improves the correspondence.) 

Other results, based upon the substitutional a-MgZn model for a selection 

of 2kF/kp and q^A values, were presented in Reference 24.  A general 

conclusion to be drawn is that the R vs. T curves for model A2 are well 

approximated by R vs. T curves for model Al.  The K-dependence of the t-matrix 

for the a-MgZn substitutional model apparently only slightly increases the 
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phonon ineffectiveness for a given qjjA and increases the "effective 2kp/kp" 

with respect to the constant t-matrix model. 

Effective Potential Models 

Model Bl.  a-MgZn adjusted s and p model t-matrix. 

This model was discussed for 2k-p   -  1.1 kp (the appropriate condition in 

the a-MgxZni-x alloys) in Reference 12.  The s and p phase shifts were 

adjusted to satisfy the Friedel sum rule and to give the observed magnitude of 

p with all other phase shifts zero.  The R vs. T curves for this model are 

essentially equivalent to those for the a-MgZn substitutional model (or R-type 

curves deduced for the constant t-matrix case with small Zkp/kp and qpA 

shifts). 

Model B2.  Pseudopotential scattering matrix elements. 

We noted in Reference 12 that the p vs. T curves for a-MgZn could not be 

well represented by pseudopotential results.  We suggested in that work that 

the problem with application of diffraction models incorporating pseudo- 

potentials could be in the use of Born approximation.  Thus, the work of 

Young, Meyer, and Kilby (ref 11), in which single site multiple scattering on 

pseudopotentials was treated to produce sets of scattering phase shifts, seems 

especially interesting.  We have performed calculations based upon the 

pseudoatom phase shifts of Young, Meyer, and Kilby (ref 11).  Figure 12 shows 

a selection of results computed for the potassium pseudoatom phase shifts for 

qpA = 12 and a set of 2kp/kp values which span the range for negative tcr. 

All the p vs. x curves exhibit relatively large maxima and Tj^ > 0.35.  The 

potassium pseuodatum phase shift results are quite similar to those described 

in Reference 12 for Born approximation pseudopotential (ref 33) in Mg and Zn 
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and are representative of our calculations for all the monovalent pseudoatom 

phase shifts given in Reference 11. 

Model B3.  Zinc phase shift effective t-matrix. 

The Zn phase shifts used in model A2 are used to define this effective 

t-matrix.  Results based upon this t-matrix were given in Reference 24.  The 

magnitude of these phase shifts are comparable to those of the monovalent 

pseudoatoms (model B2), but the results more closely resemble those of the 

constant t-matrix except that the magnitudes of the maximum negative tcr's are 

larger, the range of 2kF/kp for negative tcr is smaller, and the q^A value 

required for monotonic decreasing p vs. x is larger. 

DISCUSSION 

The effect of saturation (as treated in this report) is to reduce the 

electron-phonon interaction.  We have assumed that the longitudinal Pippard 

function F(y), defined in Eq. (9), gives a reasonable representation of the 

reduction of the electron-phonon interaction at small qA.  Although we have 

not done extensive studies of the sensitivity of the results to the specific 

form assumed for F(y), we believe that the results do not depend strongly on 

how one smoothly interpolates between the small and large qA limits for which 

exact expressions are available. 

With regard to the suitability of applying the longitudinal Pippard 

function to general phonons, we might consider the corresponding transverse 

Pippard (ref 21) function 

u       y2        3 
Ft(y) = ; [ " -] Ot) 

2 (l+yz)tan V-y  2y 
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Evaluation of F(y) and Pt(y) indicates that the functions differ at most by 

about six percent for 1 < y < 100, and by less than eight percent for 0.1 < y 

< 1.  Thus, for our purposes, F(y) would represent the reduction in 

electron-phonon interaction of transverse as well as longitudinal phonons. 

The semi-classical nature of Pippard's derivation has led to questions 

pertaining to the validity of using the simple Pippard functions to describe 

phonon ineffectiveness.  Schmid (ref 34) addressed these objections by 

considering the electron-phonon interaction in finite mean free path metals on 

a more exact quantum mechanical basis.  He succeeded in demonstrating that for 

s-wave scattering and other reasonable approximations:  (i)  the longitudinal 

phonon Greens function appears only in combination with the longitudinal 

Pippard function, and (ii) the transverse phonon Greens function appears in 

combination with a form that agrees with the transverse Pippard function at 

small qA.  Thus, one may expect that for less restrictive assumptions the 

Pippard functions approximate the mean free path dependent reduction of the 

electron-phonon interaction. 

Furthermore, it has been demonstrated that ultrasonic attenuation (refs 

21,35) and thermal conductivity data (ref 22) are explained by Pippard's 

theory.  Also, the present authors have shown that the degradation of Tc in 

imperfect strong coupling superconductors (ref 23) and the major resistivity 

anomalies (i.e., Mooij phenomena) in high resistivity crystalline and 

amorphous metals (ref 15) are consistent with predictions of a model 

incorporating phonon ineffectiveness in the manner described here. 
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The constant t-matrix model (Model Al) yields results which are 

essentially equivalent to those obtained from the other models studied thus 

far.  The monovalent pseudoatom results (Model B2) can be made to conform with 

the other model results if fairly large adjustments in qDA are allowed.  Thus, 

the model calculations yield p(T) forms which are essentially determined by 

structure alone.  The effect of the different t-matrix forms is merely to 

change the 2kF/kp and q^A parameters appropriate to a given p(T), i.e., dras- 

tically different t-matrix forms yield essentially equivalent p vs. T curves. 

Some of the effects of employing the integral expression, Eq. (5), rather 

than the usual "backscattering dominant" expression include:  (i) The center 

of the range of 2kF/kp yielding negative tcr is shifted to higher values, 

(ii) The range of values of Zkp/kp for negative tcr is increased,  (iii) Not 

only are the small maxima in p vs. T predicted in Reference 8 for "back- 

scattering dominant" retained in the averaging process, but in some regions of 

2kp/kp the maxima are actually enhanced by the mixing in of some positive tcr 

components of SP (from smaller K/kp). 

Phonon ineffectiveness effects can be seen in the tcr plots of Figures 2 

and 10.  The shifts of the positive to negative tcr crossover points produced 

by going from qjjA = 300 to 18 are comparable in magnitude to those produced by 

going from "backscattering dominant" to the integral form in the unsaturated 

theory. 

Figures 3 through 7 illustrate phonon ineffectiveness effects for a 

variety of 2kF/kp.  The curves for qDA = 300 are indistinguishable (on the 

scales of the figures) from the results of standard theory (qoA = 0O). 

Significant deviations from the qoA = 300 case are apparent already at qpA = 
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18.  Results (not shown) of other calculations at specific 2k.F/kp indicate 

that the deviations from Ziman-Faber theory could be observed for qpA > 30. 

Thus, phonon ineffectiveness should be considered in determining the p vs. T 

behavior of virtually all known amorphous metals! 

If the partial (geometric) structure factors and t-matrices are known, 

the resistivity will be expressed as a linear combination of integrals of the 

form appearing in the substitutional model.  One could parameterize this more 

general case in terms of a value for q^A and a set of weights and Zkp/kp 

values for each partial contribution to p.  In the simplest case one could 

keep the constant t-matrix approximation; however, generalizations are 

obviously possible.  A treatment along these lines could lead to observable 

differences with respect to the substitutional model if the partial structure 

factor peaks are well separated and q^A is not too small.  (It is doubtful, 

for example, that one could discern differences between an appropriate 

substitutional model and a calculation based upon partial structure factor 

peaks separated by ten percent for qoA < 15 unless the partial structure 

factors and/or t-matrices were of dramatically different form.) 

If the low energy part of the phonon spectrum is Debye like, then 

qualitatively different results would not be obtained at low temperatures even 

if the true phonon density of states and dispersion relations were 

incorporated into the models.  However, it is possible that more realistic 

spectra might significantly alter results for T > L  We have not yet explored 

this question. 

The results presented here were obtained on the assumption that qp = kp. 

In treating this problem in a general way one might equally well have, for 
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example, assumed qo fixed.  The value of qo influences the magnitude of the 

temperature dependent effects and one could improve the theoretical procedure 

for a given alloy series by using the best available values for q^ and kp. 

The T-dependent parts of p (R(T) or tcr) for a fixed qD and a qD = kF 

calculation would differ by less than ± 20 percent for 1 < Z < 4. 

Faber-Ziman theory and hence our results yield p(T) at constant volume. 

Thus, in experimental tests of the theory thermal expansions must be 

considered.  One generally assumes that 2kp/kp is essentially T-independent 

because x-ray data (refs 36,37) indicate that kp3^j is constant over extensive 

temperature ranges (which is consistent with the Intuitive notion that only 

the scale of the structure of an amorphous metal should change during thermal 

expansion) and the free electron model which implies that kp0^ is also T- 

independent.  However, volume dependent effects in the scattering matrix 

elements can be significant.  These effects can be incorporated in the 

diffraction model in a straightforward manner.  For example, Hafner (ref 38) 

found that thermal expansion effects were appreciable in first principles 

pseudopotential based diffraction model studies of p(T) in liquid and 

amorphous Mg7Zn3. 

Our primary objective is to describe the implications of the generalized 

Baym-Faber-Ziman theory (incorporating Pippard-Ziman phonon ineffectiveness) 

which are determined primarily by the structure of metallic glasses.  The 

results for all the model t-matrices studied do indeed exhibit a strong family 

resemblance.  Even the monovalent pseudoatom results, which are essentially 

pseudopotential results, are viewed as part of this family, although large 

adjustments in q^A and Zkp/kp are required to make them conform.  We consider 
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an adjustment of less than 15 percent in qDA or less than 3 percent in 2kF/kp 

as "small". 

To compare computed results with data, one would begin with measured 

parameters or free electron approximations, for example.  The important 

parameter qDA is estimated (free electron model) by: 

qDA = 644(Z/2)
1/3 (kFaHrkp/u^cm)-1 (24) 

where aH is the Bohr radius.  (Note that we relax the qD = kF condition to 

obtain Eq. (24).)  The appropriate qDA will in general not be one of those 

shown in the figures.  Usually one of the curves given will yield a good 

approximation.  However, one can do better.  Linear interpolation for R or tcr 

on log(qDA) will yield excellent results for 2 < qDA < 18 and good results for 

18 < qoA < 300.  For example, to obtain R(8) use 

R(8) = [log(12/8)R(6) + log(8/6)R(12)]/log(12/6) 

since curves are given for qoA = 12 and qoA = 6.  This procedure could be 

employed to account for the T-dependent changes in qDA in a self-consistent 

manner; however, in practical cases this effect would be only barely 

perceptible even in extreme cases.  (e.g.. An extreme case might be a ten 

percent reduction of p from 0°K to room temperature.  In such cases a slight 

upward curvature in p vs. T would be generated near room temperature.  A 

single iteration would yield the entire effect within one percent of the 

change in p.) 

References 12 and 24 demonstrated that Pippard-Ziman phonon ineffective- 

ness produced significant effects in low resistivity (p « 50 yflcm) amorphous 

alloys so we cannot make a clear cut separation into high and low resistivity 

metals.  We shall, somewhat arbitrarily, consider an alloy to have high 
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resistivity if qoh  is small enough to produce raonotonic decreasing p(T).  For 

example, for the a-MgZn substitutional model or for the constant t-matrix 

model, q^A < 10 would correspond to high resistivity.  Equation (24) shows 

that kF and Z as well as p play a role in determining "high resistivity" under 

this definition. 

Interesting phenomena (viz., low temperature maxima and/or minima) occur 

in low resistivity amorphous alloys.  Good agreement with the observed size 

and position of the minima and maxima in p(T) and reasonable agreement with 

the tcr can be obtained with either the constant t-matrix or the a-MgZn 

substitutional model with small adjustments of parameters.  A single value of 

a, consistent with kp and M, fits the entire p vs. T with a value of the Debye 

temperature (usually) consistent with tabulated values of the resistivity 

Debye temperature (denoted as 9^).  This choice of 9 might be considered an 

adjustment to the thermal Debye temperature; 9^^ usually differs from the 

thermal value by less than 30 percent (ref 39). 

The predicted tcr vs. 2kp/kp curve for these models also appears to have 

the observed form (i.e., negative tcr persists to quite large 2kF/kp and there 

is relatively small variation in the magnitude of the tcr for a range of 

2kp/kp near the maximum negative value). 

Most glassy metals fall into the high resistivity category and there are 

many alloy series which exhibit a transition to monotonic decreasing (i.e., 

high p) behavior.  There are examples of high resistivity amorphous metals 

which yield results consistent with the model calculations (ref 40).  However, 

the typical case (ref 17) differs from the theory on critical analysis of the 

low temperature form of P(T) and/or the size of the positive deviations from 
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linearity in P(T) near t = 1.  This problem is only partially alleviated by 

accounting for variations of qDA as p decreases with increasing T for 

appropriate a values.  Actually, the agreement is reasonably good in many of 

these high p alloys when based upon the standards usually applied to the 

fitting of resistivity data to diffraction model results. 

The origin of the discrepancies in the high resistivity alloys is not 

known.  Some possibilities would include:  (i) Realistic phonon spectra.  (ii) 

Appropriate t-matrix forms.  (iii) Additional scattering mechanisms related, 

for example, to two level systems (ref 41).  (iv) Saturation effects in the 

elastic scattering contributions.  (v) Incipient localization (ref 42). 

CONCLUSIONS 

Diffraction model calculations, incorporating the Pippard-Zlman 

expression to represent phonon ineffectiveness and employing a number of model 

t-matrices have been performed.  Although the results are not very sensitive 

to the exact form of F(qA), the Greens function analysis of Schmid (ref 34) 

and a variety of experimental results controlled by the electron-phonon 

interaction support the use of this procedure. 

The results for low resistivity (qDA > 10 or p < 100 y^cm) amorphous 

metals agree well with the extensive body of data obtained for such systems by 

Mizutani and coworkers.  The alloys studied by these workers are exceptionally 

well characterized so that direct comparisons are possible.  Such features as 

low temperature minima and maxima in p for negative tcr cases and their 

variations with q^A and ZkpVkp are reproduced.  Also, the experimental trends 

of the tcr with 2kF/kp are explained; in particular, the shift relative to 
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backscattering dominant results and the extended range of Zkp/kp for negative 

tcr are explained.  Good agreement with the data is obtained with only small 

adjustments in 2kF/kp and/or qDA for all the scattering matrix models treated 

except for the pseudopotential based t-matrix models, which require larger 

adjustments of the parameters.  The larger adjustments in 2kF/kp and q^h  that 

are required to make the pseudopotential based calculations conform suggest 

that systems which are well-described by pseudopotentials might yield p vs• T 

curves that appear to be inconsistent with those obtained in the low 

resistivity alloys studied thus far. 

New features are predicted for high resistivity (qoA < 10 or p > 100 

yficm) alloys.  In particular, monotonic decreasing p vs. T is predicted for 

qoA-dependent ranges of Zkp/kp and in the short mean free path limit (qoA < 1) 

the low T limiting form p ~ p0(l-AT
2) with A > 0 is predicted.  This type of 

behavior is well known in high resistivity alloys.  However, except for a few 

cases, the agreement between theory and experiment is only qualitative.  In 

particular, the pronounced sigmoidal character of the measured p vs. x curves 

is not adequately explained. 
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Figure 2.  Normalized temperature coefficient of resistivity (Eq. (17) for the 

averaged t-matrix term (i.e., the \cjti +  C2t2|2 term) in Eq. (12b) 
versus 2kp/kp for the constant t-matrix substitutional model. 
(Parameters as in Figure 1.) 
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Figure 10,  Normalized temperature coefficient of resistivity (Eq. (17)) versus 
2Wkp for the a-MgyZr^ substitutional model.  The parameters are 
q^A values. 
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